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Abstract

We develop a structural credit-risk model to study how information asymmetry impacts

corporate bond pricing. In the model, the presence of informed trading in the secondary

market causes endogenous adverse selection and generates an informational discount

in the equilibrium bond price. We calibrate the model to match the non-monotonic

empirical relationship between yield spread and trading volume. We find that infor-

mation asymmetry depresses bond prices by 0.5%-1% for investment-grade bonds and

by 2%-7.5% for speculative-grade bonds. We provide testable predictions and policy

implications regarding the informational illiquidity in corporate bond markets.
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1 Introduction

As we have witnessed during the 2008 financial crisis and the 2020 COVID-19 crisis, liquidity

plays a significant role in determining corporate bond prices. For instance, Dick-Nielsen et al.

(2012) and Haddad et al. (2021) find a drastic increase in the liquidity component in corporate

yield spreads at the onsets of the 2008 financial crisis and the 2020 COVID-19 crisis. Friewald

et al. (2012), Falato et al. (2021), Kargar et al. (2021), and O’Hara and Zhou (2021) also

provide empirical evidence to demonstrate how fragile corporate bond markets can be due

to liquidity, especially during crisis periods. Given the importance of bond market liquidity,

several papers have attempted to assess the effect of illiquidity on corporate bond pricing.

Huang and Huang (2012) and Huang et al. (2023b) show that a broad class of standard

structural credit-risk models without a liquidity channel largely underestimate credit spreads

not only in the US but also in other countries. He and Xiong (2012), He and Milbradt

(2014), Chen et al. (2018), and Huang et al. (2023a) develop structural models to quantify

the distinct effects of credit risk and liquidity risk on yield spreads, particularly highlighting

the rollover channel of short-term debt.

However, most of these structure models focus on non-informational frictions, such as

search frictions and inventory costs, and do not explicitly consider informational frictions.

As such, our understanding of bond market illiquidity is still limited because informational

frictions are important sources of market illiquidity. For instance, Han and Zhou (2014) find

significant contributions of asymmetric information to corporate bond yields using market-

microstructure measures. Therefore, a structural model with both informational and non-

informational frictions is warranted to quantify the effect of information asymmetry on corpo-

rate bond trading and to analyze the interaction between different types of trading frictions

in corporate bond markets.

Our paper develops a structural credit-risk model in which the secondary bond market

suffers from information asymmetry between sellers and buyers. In the model, the presence of

informed trading in the secondary market causes endogenous adverse selection and generates

an informational discount in the equilibrium bond price. The model predicts a non-monotonic

relationship between credit risks and turnover rates of corporate bonds, which is consistent
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with empirical data. Calibrating the model to match this relationship, we show that the price

discounts caused by information asymmetry are non-negligible (0.5%-1%) for investment-

grade bonds but are sizable (2%-7.5%) for high-yield bonds. The model also generates

testable predictions and policy implications about how the size of informational liquidity

costs interacts with non-informational trading costs, investors’ liquidity needs, and the degree

of information asymmetry in determining bond market liquidity.

Our model considers a firm that generates stochastic cash flows over time. The firm has

a fixed amount of bonds diversely held by bond investors. The firm’s bonds are traded in a

secondary market with information asymmetry. Specifically, the firm’s liquidation value in

bankruptcy depends on its intrinsic type, which can be either high or low. We assume that

bond sellers are generally better informed of the firm’s liquidation value than bond buyers:

all current bondholders (sellers) are perfectly informed of their firm’s liquidation value, while

all but a few outside bond investors (buyers) are uninformed.

In the model, bondholders sell their bonds for two distinct reasons. First, each bond-

holder is exposed to an idiosyncratic liquidity shock. Upon being hit by a liquidity shock,

the affected bondholder immediately sells her bond position due to substantially high bond-

holding costs. Second, non-liquidity-shocked bondholders of low-type firms may have in-

centives to sell their bonds to exploit their informational advantage against potential bond

buyers, causing endogenous adverse selection in the secondary market. In addition to this

informational illiquidity, we assume each bond seller faces additional trading costs, which we

can broadly interpret as search costs, inventory costs, monopoly power of dealers, and so on.

Notably, we assume each bond seller has an option to reveal her liquidity status at some

costs before selling her bond. This liquidity-status revealing option can be interpreted as a

bond seller’s costly effort to search for potential bond buyers or dealers who can correctly

identify the seller’s trading motive based on her balance sheet or trading record. Due to

this option, those liquidity-shocked bond sellers who reveal their liquidity status can avoid

adverse selection by differentiating themselves against non-liquidity-shocked bond sellers of

low-type firms, who sell their bonds for informational motives. The anecdotal evidence

documented by Da et al. (2011) suggests that the funds managed by Dimensional Fund

Advisors consistently generate value by providing liquidity to institutional investors seeking
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to offload small-cap stocks for non-informational reasons. This particular type of transaction

observed in practice can be considered supportive evidence of our assumption regarding the

liquidity-status revealing channel. Given this assumption, only those trades made by bond

sellers who do not reveal their liquidity status, which we refer to as anonymous trades, are

subject to adverse selection and informational illiquidity.

Our model generates a non-monotonic relationship between credit risk and the size of

informed bond selling. When a firm’s credit risk is low, the private information about the

firm’s liquidation value in bankruptcy has little value. Then, due to the presence of trading

costs, bondholders of low-type firms have no incentives to sell their bonds for informational

motives, and the size of informed bond selling is unaffected by a change in credit risk.

When the credit risk is at an intermediate level, the non-liquidity-shocked bondholders of

low-type firms have some incentives to exploit their private information. In this case, an

increase in credit risk induces more informed trading. However, when the firm’s credit risk is

substantially high, liquidity-shocked bondholders will reveal their liquidity status aggressively

to avoid adverse selection. Then, even a small number of informed bond sellers can cause a

large price impact, reducing the incentives of other bondholders to conduct informed trading.

In that case, the size of informed bond selling can decrease with credit risk.

We show that the non-monotonic relationship between turnover rates and credit risks

is consistent with the data. Specifically, using the US corporate bond data, we demonstrate

that monthly weighted-average yield spreads and turnover rates of corporate bonds indeed

exhibit a non-monotonic relationship. We then calibrate the model to quantify the effect of

information asymmetry on corporate bond prices. In calibration, we match the empirically

observed turnover rates across different yield-spread groups as closely as possible because the

non-monotonic relationship between these two variables is one of the unique predictions of

our model. Our model performs well in reproducing these cross-sectional empirical moments.

According to the calibrated model, the effects of information asymmetry on corporate

bond prices are non-negligible for investment-grade bonds and are sizable for speculative-

grade bonds. Specifically, we measure the effect of information asymmetry by the size of

informational liquidity costs, defined as the scaled difference between the bond price of anony-

mous trades in the benchmark model and the bond price in an alternative model without
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information asymmetry. We show that the size of informational liquidity costs is equal to

0.47%, 0.54%, 0.70%, and 1.07% for bonds whose yield spreads are equal to the weighted

average yield spreads of AAA, AA, A, and BBB rated bonds, respectively. While our model

predicts that most investment-grade bonds do not directly suffer from adverse selection in

the secondary market, the equilibrium prices of these low-risk bonds still contain positive

informational discounts due to the expectation of potential adverse selection in the future.

The size of informational liquidity costs becomes much larger when the bond enters

the speculative-grade region. In the calibrated model, the size of informational liquidity

costs is 2.10%, 2.51%, 4.44% and 7.48% for bonds whose yield spreads are equal to the

weighted average yield spreads of BB, B, CCC, and CC/C rated bonds, respectively. For

these speculative-grade bonds, the size of informational liquidity costs can be close to the

size of non-informational liquidity costs, suggesting severe adverse selection in the secondary

bond market.

Furthermore, our model provides several policy implications through comparative statics

analysis. We find that an increase in the size of non-informational trading costs or the

investors’ liquidity-shock intensity has the largest negative effect on market liquidity for bonds

with intermediate levels of credit risk. These results suggest that the effect of the Volcker

rule, which tends to increase trading costs through reducing market-making activities, can be

overestimated when we focus only on its effect on bonds that are recently downgraded to junk

status Bao et al. (2018). In addition, our model predicts that forced bond liquidation caused

by performance-driven mutual fund redemptions (Goldstein et al., 2017) would have the

largest adverse effects on prices of high-yield bonds with BB ratings. In addition, our model

suggests that an improvement in accounting transparency or credit-rating informativeness

can reduce yield spread by lowering informational liquidity costs, but its effect on trading

volume is ambiguous and varies across bonds with different credit risks.

This paper contributes to the quantitative credit-risk literature by developing a struc-

tural credit-risk model with information asymmetry in a secondary bond market. In the

literature, Ericsson and Renault (2006), He and Xiong (2012), Huang and Huang (2012), He

and Milbradt (2014), and Chen et al. (2018) develop structural models to study the impact of

liquidity on bond prices. In particular, Ericsson and Renault (2006) investigates the effects of
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liquidity on the negotiation outcome between equityholders and bondholders. He and Xiong

(2012) study the feedback effect between default risk and liquidity risk through a short-term

debt rollover channel. He and Milbradt (2014) endogenizes the liquidity risk in He and Xiong

(2012), using search frictions. Chen et al. (2018) further extend this model by considering

the effects of the business cycle. Our paper contributes to this literature by developing a

structural model that enables us to quantitatively examine the effects of information asym-

metry among bond investors on corporate bond prices. In the literature, Duffie and Lando

(2001) study the effects of informational frictions on the term structures of yield spreads.

Their paper assumes that all bond investors possess the same information, while ours focuses

on information asymmetry between bond investors.

In this regard, our paper is also related to the theoretical literature examining the impli-

cations of information asymmetry in financial markets. A selective list of seminal contribu-

tions in this area includes Grossman and Stiglitz (1980), Kyle (1985), Glosten and Milgrom

(1985), Eisfeldt (2004), Daley and Green (2012) Malherbe (2014), Biais et al. (2015), Collin-

Dufresne and Fos (2016), Daley and Green (2016), and Albagli et al. (2023), among others.

Extending this literature, which mainly focuses on stock markets, we embed an information-

based model into a structural credit-risk model in an analytically tractable way to quantify

the effects of information asymmetry on corporate bond pricing.

Several papers attempt to estimate the adverse selection component in asset prices us-

ing the conceptual frameworks developed by the above papers. For instance, Glosten and

Harris (1988) presents the empirical evidence on the existence of adverse selection in stock

markets by decomposing the bid-ask spread into an adverse-selection component and a tran-

sitory component. Stoll (1989) finds that the quoted bid-ask spread of stocks contains a

statistically significant information-asymmetry component, whereas George et al. (1991) and

Huang and Stoll (1997) show that the economic effect of information asymmetry is smaller,

albeit significant, than that of order-processing costs. Our paper extends the strand of this

literature by quantifying the effect of information asymmetry in corporate bond markets. In

this regard, our paper is close to Han and Zhou (2014), which estimates the contribution

of asymmetric information to corporate bond yields using reduced-form models. However,

the structural approach in our paper allows us to better capture the equilibrium relation
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between informed trading and bond pricing. For instance, the methodology in their paper

takes the trade size as an exogenous variable when modeling the relationship between the

trade size and the informational liquidity component in bond prices. Yet, these two variables

are simultaneously determined in our model and affected by common factors such as firm

fundamentals, trading costs, and investors’ liquidity needs.

Besides these papers backing out information asymmetry from bid-ask spreads, some

other papers show evidence of information asymmetry from price movement, trading vol-

ume, and other measures of trading activities in stock and option markets; see, for instance,

Hasbrouck (1988), Hasbrouck (1991), Lin et al. (1995), Chan et al. (2002), Collin-Dufresne

and Fos (2015), and Kacperczyk and Pagnotta (2019). We show that informational frictions

can explain the empirically observed non-monotonic relationship between trading volume and

yield spread in the bond market. So, our paper suggests that trading volume may not be a

good measure of liquidity in markets that suffer from information frictions.

The rest of the paper is organized as follows. Section 2 develops the model. Section

3 analyzes the model. Section 4 presents the quantitative results. Section 5 provides the

concluding remarks.

2 Model

We develop a structural credit-risk model with information asymmetry in the secondary bond

market, building on Leland (1994). Time is continuous and is indexed by t ∈ [0,∞). All

agents in the model are risk-neutral and discount future cash flows at a constant risk-free

rate of r.

2.1 Firm Assets

Consider a firm whose existing assets produce a stochastic after-tax cash flow xtdt over each

instantaneous time interval [t, t+ dt). The cash flow xt evolves according to

dxt
xt

= µdt+ σdZt,
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where µ is a growth rate, σ > 0 is a volatility, and Zt is a standard Brownian motion. The

first-best value of the assets at time t is then given by

V (xt) = Et

[∫ ∞
t

e−r(s−t)xsds

]
=

xt
r − µ

.

To ensure that this first-best value is finite, we assume r − µ > 0. The realized cash flow xt

is publicly observable. We will also call xt the firm’s fundamental at time t interchangeably.

2.2 Defaultable Bonds

The firm’s capital structure is exogenously given. Specifically, the firm has a fixed amount

of perpetual bonds diversely held by a unit mass of investors, whom we call bondholders. To

make the model tractable, we assume that any bond investor can hold either 0 or 1 unit of

a bond.

Each unit of bond pays a constant coupon of c per unit of time. The corporate tax rate

is τ . Debt payment is tax deductible, meaning that the net cash flow to equityholders equals

xt − (1 − τ)c at each time t. The net cash flow to equity can be negative, in which case,

equityholders should inject additional capital to cover the temporary loss to avoid default.

But when injecting more capital is no longer profitable, equityholders choose to default as

in Leland (1994). We postulate that the default event occurs when the firm’s cash flow hits

xD, which is endogenously determined.

When the firm defaults, its bondholders take over the firm’s assets and immediately

liquidate them. From liquidation, the bondholders recover only a fraction of the first-best

value of the assets due to bankruptcy costs. The key feature of the model is that the recovery

rate of a firm depends on the firm’s intrinsic type, which can be either high (H) or low (L).

Denote the recovery rate of a high-type firm as αH and that of a low-type firm as αL. Then

the recovery value of a k-type firm will be αkxD
r−µ in default for each type k ∈ {H,L}. We

assume 0 ≤ αL < αH ≤ 1, so high-type firms will experience lower bankruptcy costs than

low-type firms. The chance that a given firm is of high type is π ∈ (0, 1). We can equivalently

say that the fraction of high-type firms among all existing firms is π. For clarification, a firm’s

type is predetermined at date 0 and does not change over time.
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A common assumption in structural credit-risk models is that sellers and buyers of

bonds have symmetric information. But this assumption is inconsistent with the empirical

findings of Han and Zhou (2014) and Benmelech and Bergman (2018) that secondary bond

markets suffer from information asymmetry. To reflect this empirical fact in a tractable way,

we assume that current bondholders (sellers) can observe their firm’s type precisely, but not

all new bond investors (buyers) are informed about the firm’s type. We will describe this

assumption in detail later. As pointed out by Han and Zhou (2014), the assumption that

existing bondholders are relatively better informed than outside bond investors is reasonable

because of the institutional feature of corporate bond markets. For instance, a firm’s institu-

tional bondholders are generally entitled to participate in regular meetings organized by the

firm’s management and request key information from the firm. For tractability, we assume

that a new bond investor becomes informed right after purchasing a bond. This simplifying

assumption is also imposed in Daley and Green (2016).

For clarification, note that whether equityholders are informed of their firm’s type or not

does not play any role in our model because equityholders are supposed to be wiped out in

default. Also, one may argue that, in the real world, information asymmetry may arise around

some other factors beyond the recovery rate, such as the growth potential or the uncertainty

level of a firm’s fundamentals, which generally affects the firm’s default probability. However,

those factors can be possibly learned from a firm’s realized cash flows reported in its financial

statements. Thus, the degree of information asymmetry regarding those factors may not be

as severe as that regarding a firm’s future recovery value. Even if we assume that bond

investors have asymmetric information about the default probability, adverse selection will

still particularly matter when credit risk is high and bond value becomes informationally

sensitive (Hölmstrom, 2015), which is qualitatively similar as in the case where information

asymmetry arises around the recovery value. In this regard, we parsimoniously assume that

information asymmetry arises only around the recovery value in the model.

9



2.3 Secondary Bond Market

We now describe bond trades in the secondary market. In this model, bondholders sell their

bonds for two motives: one for liquidity needs and the other for informational reasons.

Liquidity-driven selling: Each bondholder is subject to an uninsurable idiosyncratic

liquidity shock that arrives with Poisson intensity ξ > 0. Similar to Eisfeldt (2004) and He

and Xiong (2012), when hit by a liquidity shock, the affected bondholder will face substan-

tially high bond-holding costs and thus decides to sell her bond holdings immediately.

In addition, the liquidity status of a bond seller is not publicly known to bond buyers, as

in Eisfeldt (2004), who also consider the adverse selection problem in asset markets. To make

our model more realistic, we further assume that each bond seller has the option to reveal

her liquidity status at costs. Specifically, each bond seller can credibly reveal her liquidity

status with probability θ ∈ [0, 1], if she incurs costs amounting to δθ2

2
. Here, the parameter δ

affects the scale of liquidity-status revealing costs and the parameter θ can be interpreted as

a bond seller’s effort in revealing her liquidity status. We assume that the effort level θ is not

publicly observable to bond buyers. Due to this costly liquidity-status revealing option, any

liquidity-shocked bond seller can differentiate herself from other bond sellers who attempt to

sell their bonds for the informational motive, which will be discussed in more detail later.

In practice, the costly liquidity-status revealing effort can be interpreted as a bond

seller’s attempt to search for dealers or liquidity providers, who can successfully identify

the seller’s liquidity status based on her balance sheet and trading records. Once a seller’s

liquidity status is revealed, the buyer does not need to worry about adverse selection because

none of the non-liquidity-shocked bondholders will choose to reveal their liquidity status at

costs. As anecdotal evidence, Da et al. (2011) document that Dimensional Fund Advisors

frequently provided liquidity to institutional stock investors who tried to sell their small-

cap stocks for non-informational reasons, supporting the validity of our assumption about

the liquidity-status revealing option. From now on, we will refer to trades made by those

bondholders who do not reveal their liquidity status as anonymous trades.

For simplicity, we do not explicitly consider other types of options that allow bond sellers

to reveal the information about their firm’s type itself either directly or indirectly. Even if
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we consider these alternative types of options, the model would produce qualitatively similar

outcomes because regardless of whether a bond seller can reveal her liquidity status or the

borrowing firm’s type itself, she would reveal such information when the firm’s fundamental

x is low. In this regard, although we consider only the liquidity-status revealing option for

simplicity in this paper, we can broadly interpret this option as other types of options such

as a direct disclosure of a firm’s type or indirect information signaling.

To proceed further, note that because the effort level θ is not publicly observable, we

can postulate that any liquidity-shocked bondholder’s effort level for revealing her liquidity

status is independent of the borrowing firm’s type, which we will verify later. As such, we can

simply denote θ as θ(x) to indicate that θ depends only on the firm’s current fundamental,

not on its type. As for off-equilibrium beliefs, if a non-liquidity-shocked bondholder reveals

her liquidity status, she would be regarded as a bondholder of a low-type firm. So, none of

the non-liquidity-shocked bondholders would have incentives to reveal their liquidity status

in equilibrium.

Information-driven selling: In the presence of information asymmetry, non-liquidity-

shocked bondholders may have incentives to sell their bonds to exploit their informational

advantages. Such an incentive to conduct informed selling only happens when the underlying

firm is of low type. As such, we postulate that each non-liquidity-shocked bondholder of a

low-type firm sells her bond with an infinitesimal probability m(xt)dt at each time t, where

the bond-selling strategy m(x) ∈ [0,∞) is endogenously determined. Here, bondholders sell

their bonds with an infinitesimally small probability because only such a behavior can be

sustained in equilibrium, given that the measure of liquidity-shocked bondholders is also of

dt order.

Throughout, we assume that any aggregate trading data, such as the trading volume

of an individual firm, is not publicly observable. This assumption, which is also adopted in

Grossman and Stiglitz (1980), Bolton et al. (2011), Malherbe (2014), and Zou (2019), rules

out the possibility that bond investors can infer the firm’s type from the aggregate trading

data. This assumption is reasonable in our setting because not all trading data of corporate

bonds, which are mostly traded in over-the-counter markets, are instantly disseminated. Even

after Trade Reporting and Compliance Engine (TRACE) was introduced, some information
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about bond trades, such as the uncapped trading volume, is publicized with several months

of delay.1 Or, we may assume that trading data are observed with some noises, so that bond

investors cannot perfectly infer the firm’s type from that data.

Bond Buyers: The secondary bond market is populated with infinitely many potential

bond buyers all the time. Potential bond buyers are either informed or uninformed about

the firm’s type. Specifically, a measure νdt of informed bond investors enters the market

per dt unit of time, while all other bond investors in the secondary market are uninformed.

Assuming that some bond buyers are informed is not only realistic but also helps us obtain

better calibration results.

We consider the following simple trading mechanism between sellers and buyers within

each dt period. First, each informed buyer can preemptively reach out to one bond seller

before uninformed bond investors move. Upon the meeting, an informed buyer makes a

take-it-or-leave-it offer to the seller. The price of this offer is set to a level that makes the

seller indifferent between accepting and rejecting the offer. In equilibrium, informed buyers

will only approach bond sellers when the underlying firm is of high type. We assume ν < πξ

to rule out a trivial symmetric-information outcome in which all liquidity-shocked sellers of

high-type firms can sell their bond holdings to informed buyers.2

Then, the remaining bond sellers are matched to uninformed bond buyers. Here, we do

not explicitly model search frictions. Upon the meeting, each bond seller decides whether to

reveal her liquidity status or not. After this decision is made, a bond is traded at a price

that makes the bond buyer break even, assuming that the outside option value of all bond

buyers is 0. Note that in each bond trade, the price certainly depends on whether the seller

has revealed her liquidity status or not.

Non-informational trading costs: Besides information asymmetry, bond sellers face

non-informational trading frictions, which we model in reduced form. Specifically, we assume

that each bond seller has to bear additional trading costs of κ(xt) when she sells her bond.

This additional trading cost can be broadly considered search frictions, monopoly power of

dealers, inventory costs, and so on. While all qualitative results of our model will continue

1Financial Industry Regulatory Authority (FINRA) makes historical data available 6 months after the
transaction date for corporate and agency transactions and 18 months for securitized product transactions.

2Here, we have implicitly assumed that the total number of firms in the economy is normalized to 1.
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to hold as long as κ(x) is weakly decreasing in x, we assume that κ(x) is a constant κ to

provide a closed-form solution for the model.

2.4 Timing

The timing of the events over each time interval [t, t + dt) is as follows: (i) the firm’s cash

flow xt is realized, (ii) the firm’s equityholders make a default decision, (iii) if the firm does

not default, some bondholders are hit by idiosyncratic liquidity shocks, (iv) informed buyers

preemptively approach bond sellers and make take-it-or-leave-it offers, (v) the remaining bond

sellers are matched with uninformed bond buyers, (vi) those bond sellers decide whether to

reveal their liquidity status before selling their bonds, and (vii) bonds are traded at prices

that make buyers break even.

3 Equilibrium Analysis

In this section, we characterize an equilibrium of the model and discuss the qualitative

properties of the model.

3.1 Bond Prices

To characterize an equilibrium, we first let (i) P I(x) denote the price offered by informed

buyers to bond sellers of high-type firms, (ii) PR(x) denote the price at which the bondholders,

who were not approached by informed buyers, can sell their bonds by revealing their liquidity

status, (iii) PA(x) denote the price at which those bondholders can sell their bonds without

revealing their liquidity status, and (iv) Dk(x) denote the true value of bonds of a k-type

firm for each type k ∈ {H,L}. Below, we first explain how the prices PR(x) and PA(x) are

determined and then discuss how P I(x) is determined.

Recall that we have postulated (i) each liquidity-shocked bondholder reveals her liquidity

status with a probability θ(x) regardless of a firm’s type and (ii) each non-liquidity-shocked

bondholder of low-type firms sells her bond with a probability m(x)dt. Thus, the bond prices
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PR(x) and PA(x) should be respectively equal to

PR(x) =
(πξ − ν)θ(x)DH(x) + (1− π)ξθ(x)DL(x)

(πξ − ν)θ(x) + (1− π)ξθ(x)
= λDH(x) + (1− λ)DL(x) (1)

and

PA(x) =
(πξ − ν)(1− θ(x))DH(x) + (1− π)(ξ(1− θ(x)) +m(x))DL(x)

(πξ − ν)(1− θ(x)) + (1− π)(ξ(1− θ(x)) +m(x))
, (2)

where λ = πξ−ν
ξ−ν . Specifically, the expression for PR(x) denotes the average value of bonds

sold by liquidity-shocked bond sellers who reveal their liquidity status. Here, we have used

the fact that a measure ν of informed buyers have already absorbed some bonds from bond

sellers of high-type firms. The expression for PA(x) denotes the average value of bonds

sold by bondholders who do not reveal their liquidity status. In this expression, we have

used the fact that those bond sellers include a measure (1− π)m(x) of non-liquidity-shocked

bondholders of low-type firms who sell their bonds for informational reasons. The above two

expressions immediately imply that PA(x) ≤ PR(x), meaning that informed bond selling

causes a negative price impact.

The price that is offered by informed buyers preemptively to bond sellers of high-type

firms should be equal to

P I(x) = θ(x)PR(x) + (1− θ(x))PA(x)− δ

2
θ(x)2, (3)

because an informed buyer sets the price to a level at which a bond seller is indifferent

between accepting and rejecting the offer. Here, informed buyers set this price by rationally

anticipating the equilibrium effort level for liquidity status revealing, θ(x), which we pin

down in the next section. By offering this price, each informed buyer earns a positive profit

of DH(x)− P I(x).

3.2 Optimal Strategies and Valuation

In this section, we pin down the optimal default strategy, liquidity-status revealing strategy,

and informed bond-selling strategy. We also discuss how to calculate the true debt value of

each type of firm.
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Default Strategy: The equityholders in our model face the same problem as those

equityholders in Leland (1994) because equityholders in both models are not concerned about

the recovery value of their assets in default. Thus, the default threshold xD is given by

xD =
−η2(r − µ)(1− τ)c

(1− η2)r
, (4)

where

η1, η2 =
−µ+ σ2

2
±
√(

µ− σ2

2

)2
+ 2σ2r

σ2
. (5)

The constant η1 will be used later.

Liquidity-Status Revealing Strategy: Now, consider the liquidity-shocked bond-

holders who were not contacted by informed buyers. Regardless of the borrowing firm’s

type, each of these remaining liquidity-shocked bondholders chooses the effort level θ(xt) for

liquidity-status revealing to maximize her expected profits:

max
θ(xt)∈[0,1]

θ(xt)P
R(xt) + (1− θ(xt))PA(xt)−

δ

2
θ(xt)

2 − κ.

The sum of the first two terms indicates the expected bond price she would receive, the third

term denotes the effort costs, and the last term is the non-informational trading costs, which

are not affected by θ(x). Here, as briefly mentioned above, a firm’s type does not enter into

this problem because the effort level θ(x) is not observable to the bond buyers and thereby

the prices PR(x) and PA(x) do not depend on such an effort level.

The solution to the above problem is

θ(x) = min

{
PR(x)− PA(x)

δ
, 1

}
. (6)

That is, a liquidity-shocked bond seller is more willing to reveal her liquidity status if (i)

the price impact caused by informed bond selling, that is, PR(x) − PA(x), is larger or (ii)

the liquidity-status revealing cost, δ, is lower. Under the above optimal strategy θ(x), the
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expected profits to each liquidity-shocked bond seller are equal to PR(x)− δ
2
− κ, if PR(x)− PA(x) > δ

PA(x) + (PR(x)−PA(x))2
2δ

− κ, otherwise.
(7)

We will use this expression when calculating the true value of debt of each type of firm.

Informed Bond-Selling Strategy: Regarding the informed bond-selling strategy,

note first that if a non-liquidity-shocked bondholder of a low-type firm sells her bond holdings

today, she would earn PA(x)−κ. But if she keeps her bond, her valuation is given by DL(x).

Hence, the informed bond-selling strategy m(x) must satisfy m(x) ∈ [0,∞), if PA(x)− κ = DL(x)

m(x) = 0, if PA(x)− κ < DL(x).
(8)

Specifically, the first line indicates the case where the bond seller is indifferent between selling

or keeping her bond, and thus, m(x) can be any number. The second line indicates the case

where keeping the bond is strictly more profitable and so, m(x) is set to 0. For clarification,

note that the case of PA(x) − κ > DL(x) never arises in equilibrium because if that case

occurs, all non-liquidity-shocked bondholders of low-type firms will sell their bond holdings,

which would then push down the bond price PA(x) to DL(x), a contradiction because κ > 0.

Valuation: We now discuss how to calculate the true value of debt of each type of firm.

Under the risk-neutrality assumption, the standard continuous-time method implies that the

value functions DH(x) and DL(x) must satisfy the following Hamilton-Jacobi-Bellman (HJB)

equations:

rDH = c+ξ

[
ν

πξ
· P I(x) +

(
1− ν

πξ

)
max

θ(x)∈[0,1]
{θ(x)PR(x) + (1− θ(x))PA(x)− δ

2
θ(x)2} − κ

−DH(x)
]

+ADH , (9)
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rDL = c+ ξ

[
max

θ(x)∈[0,1]
θ(x)PR(x) + (1− θ(x))PA(x)− δ

2
θ(x)2 − κ−DL(x)

]
+ max

m(x)≥0
m(x)(PA(x)− κ−DL(x)) +ADL, (10)

subject to

DH(xD) =
αHxD
r − µ

and DL(xD) =
αLxD
r − µ

,

where AU(x) denotes µxUx(x) + σ2x2

2
Uxx(x) for any value function U . The term on the

left-hand side of (9) is the expected return on a high-type firm’s debt. The first term on

the right-hand side of (9) is the coupon payment. The second term describes the expected

profits that will be obtained when hit by an idiosyncratic liquidity shock. Inside the bracket,

the first term denotes the case where a bond is sold to an informed buyer; the second term

describes the presence of the liquidity-status revealing option for those bondholders who were

not approached by informed buyers; and the third term denotes non-informational trading

costs. The remaining term ADH indicates the expected changes in the debt value due to

changes in the fundamental.

We can similarly understand the equation forDL(x) in (10) except the term, m(x)(PA(x)−

κ − DL(x)). This term represents the expected incremental profits that a non-liquidity-

shocked bondholder of a low-type firm can earn by selling her bond with a probability m(x)dt

rather than keeping her bond.

3.3 Equilibrium

An equilibrium of this model is defined as a collection of {xD, θ(x),m(x), P I(x), PR(x),

PA(x), DH(x), DL(x)} such that (i) the default threshold is given by (4), (ii) the liquidity-

status revealing strategy θ(x) satisfies (6), (iii) the informed bond-selling strategy m(x)

satisfies (8), (iv) the bond price offered by informed buyers, P I(x), satisfies (3), (v) the bond

price PR(x) at which bondholders can sell their bonds by revealing their liquidity status

satisfies (1), (vi) the bond price PA(x) at which bondholders can sell their bonds without

revealing their liquidity status satisfies (2), (vii) the true value of a high-type bond satisfies

(9), and (viii) the true value of a low-type bond satisfies (10).
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Equilibrium Thresholds: To pin down an equilibrium, we first conjecture that the

liquidity-status revealing strategy θ(x) increases as a firm’s fundamental x decreases. We

will certainly verify this conjecture later. Specifically, note that information asymmetry

in our model arises around the firm’s recovery rate. Thus, the asymmetric information

problem becomes more severe as the firm’s fundamental deteriorates. Hence, the conjecture

that a liquidity-shocked bondholder would have more incentives to avoid the asymmetric

information problem as the firm’s fundamental falls is reasonable.

Under this conjecture, let xL denote the threshold, if exists, such that θ(x) = 1 if and

only if x ≤ xL. That is, xL is the point under which the asymmetric information problem is

so severe that all liquidity-shocked bondholders choose to reveal their liquidity status at full

capacity. When there is no such threshold, that is, when θ(x) < 1 for all x ≥ xD, we just set

xL = xD for notational convenience.

Regarding the informed bond-selling strategy m(x), first note that when xD < xL,

m(x) must be 0 for all x ≤ xL. The reason is that when all liquidity-shocked bondholders

reveal their liquidity status, there would be no bond sellers whom the non-liquidity-shocked

bondholders of low-type firms can mimic, thereby leading to m(x) = 0 for all x ≤ xL. To

be more formal, in this case, as off-equilibrium beliefs, if any bond seller tries to sell her

bond without revealing her liquidity status, we assume that she would be believed to be a

bondholder of a low-type firm. Under this off-equilibrium belief, the non-liquidity-shocked

bondholders of low-type firms will indeed never sell their bonds for informational reasons

when x ≤ xL.

Now, we also conjecture that there is another threshold xS such that xL < xS and m(x)

is 0 for all x ≥ xS. That is, in equilibrium, m(x) should be 0 not only for sufficiently small

x but also for sufficiently large x. This conjecture makes sense because when the firm’s

fundamental is sufficiently high, the debt values of a low-type firm and a high-type firm

would be almost indistinguishable and therefore, the non-liquidity-shocked bondholders of

low-type firms would have no incentives to sell their bonds for the informational motive due

to the presence of the additional trading costs κ.

Further, when x > xS, the liquidity-status revealing strategy θ(x) should also be 0. Intu-

itively, when the market is not plagued with adverse selection, liquidity-shocked bondholders
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Figure 1: The left two graphs plot the liquidity-status revealing strategy θ(x) and the informed
bond-selling strategy, respectively, in the case of xD < xL. The right two graphs plot the liquidity-
status revealing strategy θ(x) and the informed bond-selling strategy, respectively, in the case of
xD = xL.

would not have any incentives to reveal their liquidity status at costs.

In sum, Figure 1 describes the general shapes of θ(x) and m(x). The graph on the left

describes the case of xD < xL, while the graph on the right depicts the case of xD = xL.

We later show that the second case, that is, the case of xD = xL, arises under reasonably

calibrated parameter values. In the first case, information asymmetry disappears for bonds

that are close to default as all liquidity-shocked bondholders reveal their liquidity status at

full capacity, which we think is highly unlikely in the real world.

Key Equilibrium Conditions: We now describe the procedure to find the equilibrium

thresholds xL and xS. To this aim, note first that in equilibrium, the bond price at which

bondholders can sell their bonds anonymously should be given as follows:
PA(x) = DL(x), if x ∈ (xD, xL]

PA(x) = DL(x) + κ, if x ∈ (xL, xS)

PA(x) = λDH(x) + (1− λ)DL(x), if x ∈ [xS,∞).

(11)

Specifically, under our postulation, when x ≥ xS, the market does not suffer from adverse

19



selection. So, in this case, all liquidity-shocked bondholders can simply sell their bonds at

the price equal to PR(x) = λDH(x) + (1 − λ)DL(x), leading to the third line in (11). In

other words, when x ≥ xS, the bond price is not discounted due to informed selling.

When x ∈ (xL, xS), we have postulated that the non-liquidity-shocked bondholders of

low-type firms sell their bonds with a positive probability, that is, m(x) > 0. For this outcome

to occur, those bondholders should be indifferent between selling and keeping their bonds,

leading to PA(x)− κ = DL(x).

When x ∈ (xD, xL], we have postulated that all liquidity-shocked bondholders reveal

their liquidity status at full capacity. Hence, in this case, no bondholders sell their bonds

for informational reasons. To be more formal, as the off-equilibrium price, PA(x) is set to

DL(x) because we have already mentioned that any bond seller who sells her bond without

revealing her liquidity status will be believed to be a bondholder of a low-type firm in this

case.

Next, note that the results in (6) and (8) respectively imply

 lim
x↓xL

PR(x)− PA(x) = δ, if xD < xL

PR(xL)− PA(xL) < δ, if xD = xL

and PA(xS)− κ = DL(xS).

Then, using the second and third conditions in (11), we can rewrite these conditions as λJ(xL) = κ+ δ, if xD < xL

λJ(xL) < κ+ δ, if xD = xL
and λJ(xS) = κ, (12)

where J(x) := DH(x) − DL(x). The conditions in (12) are the key conditions that we

use to pin down the equilibrium thresholds xL and xS. In Proposition 3.1, we show that

J(x) is strictly decreasing in x, thereby showing that there is a unique pair of (xL, xS) that

satisfies xL < xS and the conditions in (12). Intuitively, this property makes sense because

as the chance of default increases, the future recovery value of assets matters more for debt

valuation and therefore, the gap between the values of high-type bonds and low-type bonds

must increase. In the proof of Proposition 3.1, we verify all other equilibrium conditions

described above and also provide the closed-form solution of our model up to a system of
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< δ

Figure 2: This figure describes the value functions DH(x) and DL(x) and the bond prices PR(x)
and PA(x) in equilibrium. The left graph describes the case of xD < xL and the right graph depicts
the case of xD = xL.

highly tractable equations to complete equilibrium characterization.

Proposition 3.1. Our model has a unique equilibrium, provided that we focus on a threshold-

type equilibrium that is represented by a pair of thresholds (xL, xS).

Proof. See Appendix A.1.

Figure 2 depicts the general shapes of DH(x), DL(x), PR(x), and PA(x) in equilibrium.

The left panel describes the case of xD < xL and the right panel depicts the case of xD = xL.

Let us first consider the case of xD < xL. In this case, for each x ≥ xS, the figure shows that

PR(x) = PA(x) and PA(x)− κ ≤ DL(x), consistent with the postulation that θ(x) = 0 and

m(x) = 0 for all such x. When xL < x < xS, the figure shows that 0 < PR(x)− PA(x) < δ

and PA(x)−κ = DL(x), consistent with the postulation that 0 < θ(x) < 1 and m(x) > 0 for

all such x. When x ≤ xL, the figure shows that PR(x)−PA(x) > δ and PA(x)−κ < DL(x),

consistent with the postulation that θ(x) = 1 and m(x) = 0 for all such x. In the case of

xD = xL, the only difference is that PR(x) − PR(x) < δ at x = xD as shown in the right

panel.
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3.4 Turnover Rates and Informational Illiquidity

This section discusses the main qualitative properties of our model regarding bond turnover

rates and illiquidity caused by information asymmetry. Specifically, we show that when credit

risk increases, the average turnover rate of bonds tends to exhibit a hump-shaped pattern,

while informational liquidity costs, which we define later, monotonically increase.

Regarding turnover rates, recall that the informed trading strategy, m(x), tends to

exhibit a hump-shaped pattern as credit risk increases, as shown in the bottom two panels in

Figure 1. Intuitively, when a firm’s fundamental is higher than xS, the non-liquidity-shocked

bondholders of low-type firms have no incentives to exploit their private information due to

the additional non-informational trading costs. But when the firm’s fundamental falls below

xS, the informed bond-selling strategy m(x) starts increasing because the benefit of exploiting

the private information starts to justify the non-informational trading costs. However, in the

case of xD < xL, if the firm’s fundamental falls further below the threshold xL, all liquidity-

shocked bondholders reveal their liquidity status at full capacity (with probability 1) and

no bondholders of low-type firms are willing to sell their bonds for informational reasons.

Hence, the informed bond-selling strategy exhibits a hump-shaped pattern. Similarly, such

a humped-shape relation can also arise in the case of xD = xL, although in that case m(x)

will not entirely fall to 0 at xD.

This result immediately implies that the average turnover rate of bonds with the same

fundamental across two different types of firms, that is, ξ + (1 − π)m(x), also exhibits a

hump-shaped pattern as credit risk increases. When we calibrate our model using data in

a later section, we will use this non-monotonicity property regarding the average turnover

rate rather than examining the turnover rate of only low-type firms. The reason is that, as

econometricians, we cannot directly distinguish between different types of firms in the data.

We summarize this hump-shaped relation below.

Proposition 3.2. The average turnover rate of bonds, ξ + (1 − π)m(x), tends to exhibit a

hump-shaped relationship with the firm’s fundamental x.

Now we show that the size of informational liquidity costs monotonically increases with
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credit risk. In this section, we define informational liquidity costs as D̄(x)− PA(x), where

D̄(x) := πDH(x) + (1− π)DL(x)

denotes the unconditional expected value of debt from the perspective of a bond seller who

believes that the informational friction will temporarily disappear today but will reemerge

from tomorrow. In this regard, D̄(x)− PA(x) captures the costs of information asymmetry

in the current bond market. Nevertheless, when we quantify the overall costs of information

asymmetry in corporate bond markets in Section 4.4, this definition may not be appropriate

because D̄(x) also includes the present value of informational liquidity costs in future bond

markets. In that section, we will define informational liquidity costs in a slightly different

way, considering a hypothetical model in which information asymmetry is completely absent.

The details will be discussed later.

To show the above claim, first recall that when a firm’s fundamental x is above xS, the

bond price for anonymous trades, PA(x), is equal to λDH(x) + (1− λ)DL(x). Hence, in this

case, D̄(x) − PA(x) is equal to (π − λ)J(x). Then, as we have seen that J(x) is increasing

with credit risk, D̄(x)− PA(x) also increases with credit risk when x is higher than xS.

When a firm’s fundamental x lies between xL and xS, we have seen that PA(x) is equal

to DL(x) + κ. Hence, in this case, D̄(x)−PA(x) = πJ(x)− κ and thus, for the same reason,

D̄(x) − PA(x) increases with credit risk within the interval [xL, xS]. Over the extended

interval [xL,∞), D̄(x) − PA(x) must still increase with credit risk due to continuity. To

be more concrete, because λJ(xS) is equal to κ in equilibrium as described in (12), we have

πJ(xS)−κ = (π−λ)J(xS). In the case of xD < xL, we can further extend the above property

to the whole interval, [xD,∞), because PA(x) is set to DL(x) for each x < xL as the off-

equilibrium price so that D̄(x)− PA(x) is equal to πJ(x). We summarize this monotonicity

property below.

Proposition 3.3. The size of informational liquidity costs, defined as D̄(x)−PA(x), increases

with the firm’s fundamental x.

Intuitively, the monotonic relationship between credit risk and informational liquidity

costs is not hard to understand because bond prices generally become informationally more
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sensitive when credit risk increases, as highlighted by Hölmstrom (2015). However, this result

may seem inconsistent with the non-monotonic relation between credit risk and turnover

rates, which we have derived above, if we try to understand these two results from the

reduced-form framework proposed by Han and Zhou (2014). In their paper, a trade size

is taken as an exogenous variable and the adverse-selection component of yield spread is

assumed to be linearly dependent on the trade size. As such, the non-monotonic relation

between turnover rates and the informational liquidity costs does not arise in their framework.

Meanwhile, in our model, turnover rates and informational liquidity costs are simultane-

ously determined from the two-way causal effects between those two variables. Hence, when

the credit risk or some other common factors change, the turnover rate and the size of infor-

mational liquidity costs can move in the opposite direction. To reconcile these two seemingly

inconsistent outcomes, note that the expression (2) implies that the price impact caused by

a unit increment in informed bond selling increases when the number of liquidity-shocked

bond sellers who do not reveal their liquidity status is reduced, all else being equal. There-

fore, when credit risk increases, the size of informed trades may fall but the price impact

of informed trades rises, causing an increase in the size of informational liquidity costs. A

similar result is also obtained in Collin-Dufresne and Fos (2016), who extend the model of

Kyle (1985) by considering a stochastic volatility of noise trades. In their paper, the price

impact caused by a unit increment in the size of informed trades increases when the volume

of uninformed investors declines, which is aligned with our result.

4 Results and Implications

In this section, we first show that the model’s prediction regarding the relationship between

yield spreads and turnover rates is consistent with US corporate bond trading data. We then

calibrate the model to measure the effects of the informational frictions in corporate bond

markets. We also conduct comparative statics analysis to examine the effects of several key

model parameters on bond market liquidity.
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4.1 Data and Summary Statistics

We obtain the monthly trading volume, yields, credit ratings, and other characteristics of

corporate bonds from the WRDS Bond Return Database, which is based on bond transactions

from FINRA’s TRACE data and bond characteristics from Mergent FISD. The data period

is from July 2002 to September 2022. Following the literature on corporate bond markets, we

focus on bonds issued by non-government US issuers and denominated in US dollars. Further,

to focus on plain-vanilla corporate bonds that have better fits with the model, we exclude

bonds with zero or variable-rate coupon bonds as well as bonds that are credit-enhanced,

convertibles, asset-backed, callable, putable, exchangeable, fungible, preferred, tendered, or

a part of a unit deal. We only keep the bonds that are traded on at least 2 distinct months

in the sample. This gives us 259,575 bond-month observations for 4,531 bonds.

From this dataset, we compute the yield spread and the annualized turnover rate of each

bond-month observation as follows. The yield spread of a bond-month observation is the

difference between the bond’s yield in that month minus the same-month yield of a treasury

bond with the same maturity as the corporate bond.3 If there is no trade in that month, we

use the bond’s yield spread in the most recent month with active trading. The annualized

turnover rate of a bond-month observation is computed by the bond’s par-value trading

volume in that month, obtained from the WRDS Bond Return Database, multiplied by 12,

and divided by the bond’s par-value outstanding amounts obtained from the same database.

In addition, we exclude the first-month and last-month trading data of all corporate bonds,

where the last trading month is defined as the earlier of the month when the bond matures

and the month when the bond defaults. We winsorize yield spreads and turnover rates of

the whole sample at the 1% level. Throughout the paper, we use S&P ratings to classify

corporate bonds.

To use the empirical relationship between yield spreads and turnover rates for calibration,

we group all bond-month observations in 20 bins by yield spread. As in Table 1, the bin

width is 50 basis points when the yield spread is below 6% and is 100 basis points otherwise.

3The time-series data of treasury yields are obtained from St. Louis’s FRED Economic data. Because
FRED provides the yields of treasuries with only specific maturities, we use linear interpolation to construct
the yield curve.
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Table 1: Cross-Sectional Statistics for the Yield Spreads and Turnover Rates

Yield spread bins (−∞,0.5) [0.5,1) [1,1.5) [1.5,2) [2,2.5) [2.5,3) [3,3.5) [3.5,4) [4,4.5) [4.5,5)

Yield spread (%) 0.27 0.73 1.24 1.73 2.22 2.73 3.23 3.74 4.24 4.74

Turnover rate 0.79 0.68 0.65 0.70 0.71 0.66 0.69 0.74 0.82 0.90

Number of Obs. 39,667 50,681 39,035 30,188 20,110 14,153 10,605 8,597 6,587 4,892

Yield spread bins [5,5.5) [5.5,6) [6,7) [7,8) [8,9) [9,10) [10,11) [11,12) [12,13) [13,14)

Yield spread (%) 5.24 5.74 6.44 7.47 8.49 9.45 10.50 11.52 12.53 13.55

Turnover rate 0.86 0.87 0.99 1.11 1.23 1.33 1.57 1.33 1.34 1.30

Number of Obs. 3,552 2,786 3,564 2,272 1,476 973 676 464 410 344

Notes: The table contains numbers of observations, weighted averages of yield spreads, and weighted
averages of annualized turnover rates for bond-month observations in different yield-spread bins.

We widen the bin interval because the number of observations is much smaller for bonds with

higher yield spreads. We exclude observations with yield spreads higher than 14% as those

observations are in the default region in our calibrated model. For each bin, we compute

the weighted average of yield spreads and the weighted average of annualized turnover rates,

where we weight each bond-month observation by the bond’s par-value outstanding amount

in that month to rely more on data from bonds with larger outstanding amounts.

Figure 3 plots the weighted averages of yield spreads and annualized turnover rates

for bond-month observations in different yield-spread bins. The relationship between yield

spreads and turnover rates in these yield-spread bins is generally consistent with the model’s

prediction. The turnover rate does not vary much with the yield spread for bins whose yield

spreads are below 400 bps. Yet, the turnover rate becomes a hump-shaped function of the

yield spread for bins whose yield spreads are above 400 bps. In Figure 3, we exclude the

lowest-yield-spread bin, which contains observations with yield spreads below 50 bps. The

turnover rate of that bin is 0.79, which is slightly higher than the average turnover rate of

adjacent bins with higher yield spreads. This result, which our model does not predict, can

arise in reality because of the clientele effect (Amihud and Mendelson, 1986). That is, bonds

with lower yield spreads are more likely to be held by investors with shorter investment

horizons and are thus traded more frequently. We will discuss the clientele effect in more

detail in Section 4.5.2.

To ensure that the non-monotonic relationship between yield spreads and turnover rates
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Table 2: Regressions of Turnover Rates on Yield Spreads

(1) (2)
Turnover Rate Turnover Rate

(yield spread ≤ 400 bps) (yield spread > 400 bps)

Yield Spread -0.0307∗∗ 0.0773∗∗

(0.0077) (0.0211)
Yield Spread2 -0.0032∗∗

(0.0012)

Month FE Yes Yes
Bond FE Yes Yes

Observations 213,036 30,735

Standard errors in parentheses are double clustered. ∗ p < 0.05, ∗∗ p < 0.01.

is not solely driven by bond-level characteristics or time-varying market conditions, we run a

panel regression of turnover rates on yield spreads (in percentage terms) controlling for bond

fixed effects and year-month fixed effects. Table 2 presents the regression results. For the

sub-sample of observations whose yield spreads are below 400 bps, the regression coefficient

is statistically significant: an increase of yield spread by 100 bps (a one-unit increase of the

variable Yield Spread) is associated with a decrease of the annualized turnover rate by 3%.

In addition, we find that the regression coefficient is statistically insignificant when we focus

on the subsample of bonds whose yield spreads are between 100 and 400 bps. This result

suggests that the downward-sloping relationship in Table 2, which is not captured by our

model, is primarily driven by bonds with very low credit risks and thus can be explained by

the clientele effect as discussed above.

For the sub-sample of observations whose yield spreads are above 400 bps, the regression

result suggests a hump-shaped relationship between yield spreads and turnover rates, even

after controlling for bond fixed effects and month fixed effects. Specifically, the coefficient on

the squared yield-spread term is negative and statistically significant, suggesting a downward-

sloping relationship between yield spreads and turnover rates for bonds with very high credit

risks. According to the estimated regression parameters, an increase in the yield spread is

correlated with an increase in turnover rate when the yield spread is below 1200 bps and the

correlation turns negative when the yield spread is above 1200 bps. This result is generally

consistent with the model’s qualitative prediction and the dot plot in Figure 3.
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4.2 Model Calibration

In this section, we calibrate the model parameters. The baseline parameter values are sum-

marized in Table 3. We set the risk-free rate r to 4% because the average US Treasury rate

generally lies between 3% and 5%. Given that the US corporate tax rate is 35%, we set the

tax rate π to 27% by following the arguments by He and Xiong (2012) and He and Milbradt

(2014), who take into account the tax exemptions applied to institutional bond investors.

The average asset payout ratio estimated by Zhang et al. (2009) and Huang et al. (2020)

is about 2%. So, we set the asset growth rate µ to 2% because the asset growth rate is

equal to the risk-free rate minus the asset payout ratio in the risk-neutral world. We set the

asset volatility σ to 20% because the average asset volatility of corporate bonds estimated

by Zhang et al. (2009) is about 20%. According to our data, the average yield spread of

BBB-rated bonds is 173 bps, which is also documented as the benchmark case in Table 4.

Thus, normalizing the average price of BBB-rated bonds to 100, we set the coupon payment

c to 5.73, where we use the fact that the yield spread of any bond with a price P is given by

c
P
− r. For clarification, in our model, the average bond price of firms with a fundamental

equal to x is given by

Pavg(x) =
νP I(x) + (ξ − ν)θ(x)PR(x) + ((ξ − ν)(1− θ(x)) + (1− π)m(x))PA(x)

ξ + (1− π)m(x)
.

The cash-flow level corresponding to BBB-rated bonds under the calibrated parameter values

will be reported later.

Regarding the liquidity-shock intensity ξ, recall that the turnover rate of a bond whose

fundamental is higher than xS is equal to ξ in our model because m(x) = 0 when x ≥ xS. In

other words, the turnover rate of a bond with a low credit risk does not vary with its credit

risk. So, based on the observation that the turnover rates of bonds belonging to the second

to fifth bins in Table 1 are quite flat as predicted in our model, we set ξ to the average

turnover rate of those bonds, which is 0.68. As discussed above, we exclude the first bin

because the turnover rate of bonds with yield spreads less than 50 bps is noticeably higher

than that of other investment-grade bonds. To explain the relatively higher turnover rate

of bonds with substantially low credit risk, we may need to consider other factors such as
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Table 3: Baseline Parameter Values

Risk-free rate r = 4%
Corporate tax rate τ = 27%
Asset growth rate µ = 2%
Asset volatility σ = 20%
Coupon payment c = 5.73
Liquidity shock intensity ξ = 0.68
Recovery rate of high-type firms αH = 58.9%
Recovery rate of low-type firms αL = 49.8%
Proportion of high-type firms π = 57.3%
Non-informational trading costs κ = 0.34
Liquidity-status revealing costs δ = 2.3
Measure of informed buyers ν = 0.22

the clientele effects introduced by Amihud and Mendelson (1986). Exploring these factors

together with information asymmetry is beyond the scope of our paper.

We then calibrate the remaining parameters αH , αL, π, κ, δ, and ν to jointly match

the empirical moments introduced below as closely as possible. First, we match the average

recovery rate of assets observed in the data. According to Alderson and Betker (1995), Chen

(2010), and Glover (2016), the average asset recovery rate is around 55%. So, we aim to

match the average recovery rate in our model, παH + (1− π)αL, to 55%.

Second, we match the empirically observed total trading costs of BB-rated bonds.

According to Edwards et al. (2007), the average trading cost is about 70 bps for junk

bonds. This average trading cost corresponds to a trade size of $200,000, which is close

to the medium trade size and also used in He and Milbradt (2014). In our model, we use

(D̄(x) − Pavg(x) + κ)/D̄(x) to measure the average total trading costs. As such, we match

this model-implied average total trading cost to 70 bps for a bond whose yield spread is at

397 bps, the average yield spread of BB-rated bonds in our sample.

Third, we match the empirically observed turnover rates of bonds across different yield-

spread bins as closely as possible, which are summarized in Table 1. In other words, our

calibration targets the non-monotonic relationship between yield spreads and turnover rates,

which is discussed in detail in 3.4.

The parameter values calibrated from the above approach are as follows: αH = 58.9%,

αL = 49.8%, π = 57.25%, κ = 0.34, δ = 2.3, and ν = 0.22. Under these calibrated parameter
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Figure 3: This figure plots both the empirically observed and model-implied turnover rates against
the yield spreads of bonds. The cross-sectional empirical moments of the turnover rate are taken
from Table 1. For the model-implied result, the baseline parameter values in Table 3 are used.

values, the equilibrium thresholds xD, xL, and xS are 1.23, 1.23, and 1.66, respectively.

As briefly mentioned before, the equilibrium thresholds xD and xL are the same in the

calibrated model, meaning that not all liquidity-shocked bondholders reveal their liquidity

status when their firm is close to default. In addition, the cash-flow levels corresponding

to BBB- and BB-rated bonds are xBBB = 2.57 and xBB = 1.73, respectively. This result

means that bondholders of low-type firms start to sell their bonds for informational reasons

approximately when the credit risk of their bonds is somewhere in between the credit risk of

the average BBB bond and that of the average BB bond.

4.3 Turnover Rates and Yield Spreads

Figure 3 plots model-implied and empirically observed turnover rates across different yield-

spread bins. The calibrated model predicts a hump-shaped relationship between yield spreads

and turnover rates, consistent with empirical data. As shown in Figure 3, (i) when the yield

spread is less than 442 bps, the turnover rate is flat, (ii) when the yield spread rises above

442 bps, the turnover rate starts increasing until the yield spread reaches around 1060 bps,
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and (iii) when the yield spread increases further, the turnover rate tends to decline.4 These

findings are generally consistent with empirical results in the literature. For instance, Namin

(2017) shows that the trading volume tends to increase when the credit rating increases from

B to CCC and starts decreasing as the credit rating further declines towards CC and C,

consistent with our results.

As illustrated in Figure 3, the effect of information asymmetry on trading volume is

small for investment-grade bonds. Intuitively, when the bond’s credit risk is low, the size of

informed bond selling is zero as existing bondholders have no incentives to exploit their infor-

mational advantages. In the calibrated model, this no-informed-trading region spans between

0 to 442 bps, which covers most investment-grade bonds (93% of the total investment-grade

bond-month observations).

However, informed trading starts to affect trading volume when the yield spread rises

above 442 bps, which is in between the average yield spread of BB-rated bonds and that of

B-rated bonds. In our sample, 7% of investment-graded bond-month observations and 47%

of speculative-grade bond-month observations fall into this informed-trading region.

Moreover, our model shows that the turnover rate decreases with the yield spread for

bonds whose yield spreads are larger than 1060 bps. In our sample, this downward-sloping

region contains less than 1% of investment-grade bond-month observations and about 10% of

speculative-grade bond-month observations. The presence of this downward-sloping region

highlights the endogenous determination of adverse selection caused by informed sellers’

selling decisions and liquidity-shocked sellers’ liquidity-status revealing decisions.

The calibration results raise concerns about using the turnover rate or other volume-

based metrics as measures for bond market liquidity. In search-based models such as Duffie

et al. (2005) and He and Milbradt (2014), the turnover rate of a bond, which is determined by

the searching technology in the bond market, is indeed positively correlated with other price-

based-measures of bond market liquidity. However, our model suggests that informational

friction complicates the relationship between turnover rate (or other volume-based liquidity

measures) and transaction costs (or other price-based liquidity measures). According to

4In the calibrated model, note that the turnover rate of bonds with the largest yield spread is higher than
the turnover rate of bonds with the smallest yield spread, which explains why the two equilibrium thresholds
xD and xL are the same under the baseline parameter choice.
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our calibration, an increase in the default risk of a bond can cause the turnover rate and

the liquidity costs to move in opposite directions, especially for bonds that are traded at

relatively large yield spreads (between 442 and 1060 bps in the calibrated model). Therefore,

our model suggests that trading volume may not be a good measure of liquidity in markets

that suffer from informational frictions.

4.4 Decomposition of Liquidity Costs

In this section, we study the quantitative importance of informational and non-informational

liquidity costs in the calibrated model. To this end, we first consider a benchmark model

developed by Leland (1994), which does not have any liquidity frictions in the secondary

bond market. Let DB(x) denote the debt value obtained in this benchmark model. We then

consider another model that incorporates only non-informational trading costs into Leland

(1994) by assuming that a bondholder needs to pay κ to sell her bond when hit by a liquidity

shock. That is, this alternative model captures only non-informational trading costs, but not

informational trading costs as in our full model. Let DN(x) denote the debt value obtained in

this alternative model. We omit to present the closed-form solutions for this reduced model

because the solutions are similar to those obtained in He and Xiong (2012).

Next, we measure the size of non-informational liquidity costs by DB(x)−DN (x)+κ
DB(x)

, where

x is the current fundamental of the bond issuer. Here, we set the recovery rate in the

model with non-informational trading costs to 55%, which is the average recovery rate in

our calibrated model. But, as pointed out by He and Milbradt (2014), if we set the recovery

rate in the benchmark model to the same number, the non-informational liquidity costs will

approach 0 as the chance of default increases. The reason is that, in such a case, bondholders

will no longer face liquidity shocks after default and therefore, the default event is beneficial

for bondholders. As such, to measure the size of liquidity costs in secondary asset markets

together, He and Milbradt (2014) set the recovery rate in the benchmark model to be higher

than that in the model with liquidity frictions. To adopt this point in the simplest way, we

use the empirical finding of Acharya et al. (2007) that the recovery rate of firms in financially

distressed industries is less than that in financially healthy industries by about 8%, if we
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exclude utilities and financial service industries. Employing this fact, we set the recovery

rate in the benchmark model without any liquidity frictions to 0.55× 1.08 = 59.4%.

Finally, we measure the size of overall liquidity costs by DB(x)−PA(x)+κ
DB(x)

, where PA(x) is

the bond price (of an anonymous trade) in the calibrated model, and DB(x) is the bond

price in the Leland model with no liquidity costs. This measure of overall liquidity costs

can be interpreted as the price discount an uninformed buyer demands in an anonymous

trade due to informational and non-informational reasons. Then, we can measure the size of

informational liquidity costs by the size difference between overall liquidity costs and non-

informational liquidity costs.

Figure 4 plots the decomposition of the overall liquidity costs into informational and

non-informational liquidity costs. First of all, we find that the size of informational liquidity

costs is non-zero for bonds whose yield spreads are larger than 19 bps, which include most of

the no-informed-trading region (between 0 and 442 bps) in Figure 3. To explain this result,

note that the size of informational liquidity costs is measured as the percentage difference

between the bond price in our calibrated model and that in the alternative Leland model

with non-informational costs only. For a bond whose yield spread is in the no-informed-

trading region, although there is no information asymmetry in the current bond market, its

bondholder may suffer adverse selection in selling her bond in the future when its yield spread

moves up to the informed-trading region. In other words, due to the dynamic nature of the

model, our measure of informational liquidity costs can take into account the present value

of future informational liquidity costs, which is non-zero for most high-quality bonds.

Next, we analyze the size of informational liquidity costs, which can be interpreted as

the bond-price discount caused by the negative impact of adverse selection on the secondary

bond market. As plotted in Figure 4 and reported in Table 4 (the benchmark case), the

sizes of informational liquidity costs are 0.47% 0.54%, 0.70%, and 1.07% for bonds whose

yield spreads are equal to the weighted average yield spreads of AAA, AA, A, and BBB rated

bonds, respectively. Therefore, for investment-grade bonds with low credit risks, the presence

of informational friction generates a positive but relatively small price discount, roughly in

the range of (0.5%, 1%), when compared to the frictionless benchmark.

However, the size of informational liquidity costs is increasing in the bond’s yield spread.
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According to the calibration, the sizes of informational liquidity costs are 2.10%, 2.51%,

4.44% and 7.48% for bonds whose yield spreads are equal to the weighted average yield

spreads of BB, B, CCC, and CC/C rated bonds, respectively. For high-yield bonds with

high credit risks, informational liquidity costs have much larger effects on bond pricing. The

corresponding price discount is about 2% to 2.5% for junk bonds with BB or B ratings and

can exceed 5% for junk bonds in the C category.

In sum, our calibrated model shows that adverse selection negatively affects market

liquidity not only for high-risk bonds that are currently subject to informed trading but also

for low-risk bonds due to the expectation of future informational illiquidity. In the empirical

literature, Benmelech and Bergman (2018) finds that the effect of information asymmetry on

market liquidity exhibits a hockey-stick pattern and is sizable only for bonds with significant

default risks. Our calibration result is consistent with this hockey-stick pattern in the sense

that the amount of informed trading is zero for bonds with yield spreads below 442 bps.

Nevertheless, we show that when the presence value of future informational liquidity costs is

considered, the size of informational liquidity costs corresponds roughly to a price discount

of 0.5% to 1% for investment-grade bonds, which is economically significant.
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Before discussing the model’s comparative statics results, we compare the relative mag-

nitude of informational and non-informational liquidity costs for bonds with different yield

spreads. For average investment-grade bonds at different rating classes, their informational

liquidity costs take up 9.5%-18.3% of the overall liquidity costs. However, for average

speculative-grade bonds at different rating classes, their information liquidity costs take up

27.8%-47.8% of the overall liquidity costs. These results show that both the absolute size

and relative importance of informational liquidity costs in determining bond market liquidity

are higher for bonds with higher credit risks.

4.5 Comparative Statics Analysis

4.5.1 Effects of Non-Informational Trading Costs

Now we analyze the effect of the non-informational trading costs on yield spread and in-

formational liquidity. The results are summarized in Table 4, which plots yield spreads,

turnover rates, informational and non-informational liquidity costs of four investment-grade

representative bonds and four speculative-grade representative bonds for three different levels

of non-informational trading costs κ. These representative bonds are chosen so that the yield

spread of each representative bond corresponds to the weighted average yield spread for each

rating class in the calibrated model.

As shown in Table 4, reducing non-informational trading costs κ weakly increases turnover

rates for bonds at all rating classes (from AAA to CC/C). For the four investment-grade rep-

resentative bonds, the turnover rate is not sensitive even for a large decrease of κ from 0.6

to 0.1. In contrast, for the four speculative-grade representative bonds, a decrease in κ

significantly increases their trading volume. For instance, when κ decreases from the bench-

mark case 0.34 to 0.1, the turnover rate of a bond would increase by more than 100% if its

yield spread is close to the average yield spread of BB or B rated bonds. This increase in

yield spread is primarily driven by more informed trading. Specifically, when facing lower

non-information trading costs, informed bondholders have higher incentives to exploit their

informational advantage, resulting in more informed trading and higher trading volume.

Although a decrease in the size of non-informational trading costs raises the amount of
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Table 4: The Effects of the Non-Informational Trading Costs

AAA AA A BBB BB B CCC CC/C

κ = 0.1 Yield spreads 70 79 101 158 381 493 842 1381

Turnover rate 0.68 0.68 0.68 0.68 1.39 2.06 3.29 2.27

Overall liquidity costs 2.03 2.15 2.41 3.04 5.40 6.62 10.33 15.57

Informational part 0.45 0.51 0.66 1.01 2.28 2.99 5.15 8.15

Non-informational part 1.59 1.63 1.75 2.03 3.12 3.64 5.18 7.42

κ = 0.34 Yield spreads 83 93 115 173 397 505 847 1363

(benchmark) Turnover rate 0.68 0.68 0.68 0.68 0.68 0.82 1.37 1.32

Overall liquidity costs 4.95 5.05 5.28 5.84 7.55 8.29 11.19 15.65

Informational part 0.47 0.54 0.70 1.07 2.10 2.51 4.44 7.48

Non-informational part 4.48 4.51 4.58 4.76 5.45 5.78 6.76 8.17

κ = 0.6 Yield spreads 99 108 132 191 418 526 857 1355

Turnover rate 0.68 0.68 0.68 0.68 0.68 0.68 0.98 1.11

Overall liquidity costs 8.13 8.21 8.41 8.89 10.30 10.70 12.37 15.76

Informational part 0.51 0.59 0.76 1.17 2.32 2.60 3.90 6.77

Non-informational part 7.62 7.63 7.65 7.72 7.98 8.10 8.47 8.99

Notes: This table shows the effects of the non-informational trading costs κ on yield spreads (bps),
turnover rates (yearly), overall liquidity costs (%), informational liquidity costs (%), and non-
informational liquidity costs (%) across different rating classes.

informed trading, our calibration results suggest that it has an ambiguous effect on the size

of informational liquidity costs. According to Table 4, when κ decreases from the bench-

mark case 0.34 to 0.1, the informational part of overall liquidity costs slightly decreases for

investment-grade representative bonds, but it significantly increases for speculative-grade

representative bonds.

Intuitively, reducing non-informational trading costs affects the size of informational

liquidity costs through two channels. On the one hand, reducing non-informational trading

costs induces more informed trading, resulting in a higher degree of adverse selection problem

and a higher informational liquidity discount. We call this the informed-trading channel. On

the other hand, it increases bondholders’ valuation of their bonds as they expect lower trading

costs when liquidating their bonds in the future. As such, the informational liquidity discount,

defined by DN (x)−PA(x)
DB(x)

, shrinks, because both PA(x), the bond price of an anonymous trade in

the benchmark model, andDN(x), the bond price in the Leland model with non-informational

trading costs, increase and become closer to DB(x), the bond value in the standard Leland

model without trading frictions. We call this the bond-valuation channel.
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For representative bonds in the investment-grade region, the effect of the informed-

trading channel is small: these bonds are not subject to informed trading in the current bond

market and are only affected by this channel in the future when their credit risks substantially

increase. As such, the bond-valuation channel dominates, so reducing non-informational

trading costs causes a decrease in the size of informational liquidity costs. However, for rep-

resentative bonds in the speculative-grade region, the effect of the informed-trading channel

dominates as informed bondholders exploit their informational advantages by trading these

high-risk bonds in the secondary market. In this case, reducing non-informational trading

costs causes an increase in the size of informational liquidity costs.

Finally, we analyze how a change in non-informational trading costs affects bond pricing

by looking at its effect on the yield spread. Note that a change in non-informational trading

cost affects the yield spread both by directly reducing non-informational liquidity costs and

by changing informational liquidity costs. Our calibrated model shows that the effect of

trading costs on yield spread exhibits a significant degree of heterogeneity across different

rating classes. For instance, consider a decrease of κ from the benchmark case 0.34 to 0.1

in Table 4. The yield spread decrease is 13 bps for the average AAA rated bond, and the

magnitude of the decrease gradually increases as we go down the rating list, with the largest

yield-spread decrease occurring for the average BB rated bond. The above results reflect the

fact that a decrease in non-informational trading costs (in dollar terms) has larger effects

on non-informational liquidity costs (in percentage terms relative to bond market value) for

bonds with higher credit risks and lower market values.

However, for bonds rated below BB, such yield-spread decrease shrinks to 12 bps for

the average B rated bond, 5 bps for the average CCC rated bond, and turns to negative 18

bps for the average CC/C rated bond. These results are driven by the endogenous adverse

selection due to informed trading. For these speculative-grade bonds, a decrease in the size

of non-informational trading costs induces more informed trading, resulting in a substantial

increase in the size of informational liquidity costs in the secondary market.

In sum, we find that decreasing non-informational trading costs reduces yield spreads

for most bonds, yet the magnitude of these decreases is non-monotonic across bonds with

different credit risks. Under reasonable parameter values, our calibration results suggest that
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bonds around the BB rating class are most sensitive to changes in trading costs.

The above comparative-static results concerning non-informational trading costs gener-

ate a few interesting policy implications. First, we can interpret the effect of the Volcker rule

on the corporate bond market as an increase in the non-informational trading costs in the

model. The Volcker Rule, intended to limit bank risk-taking by restricting certain speculative

activities, had the unintended consequence of reducing regulated banks’ market-making ac-

tivities, which may cause a decrease in bond market liquidity. For instance, Bao et al. (2018)

find empirical evidence that due to the Volcker Rule, bonds have become less liquid during

stress when bonds are downgraded to junk status. Consistent with this empirical finding, our

model predicts that increasing the trading costs would generally reduce market liquidity and

thus increase yield spreads. Yet, generally speaking, our calibrated model suggests that the

yield-spread increase would be the highest for bonds in the BB rating class, which generally

corresponds to the subgroup of bonds studied in Bao et al. (2018). Therefore, our model

suggests that focusing on these fallen angel bonds may overestimate the effect of the Volcker

rule on bond market liquidity.

In addition, the comparative-static results can be used to analyze the effect of electronic

trading platforms on corporate bonds. In recent years, the usage of electronic venues in cor-

porate bond trading has become more prevalent. Compared to traditional over-the-counter

trading, electronic trading platforms can reduce transaction costs by allowing investors to

search many bond dealers simultaneously and to obtain pre-trade information more easily.

Hendershott and Madhavan (2015) find that controlling for bond rating and trade size, trad-

ing costs are substantially lower in electronic trading platforms than in OTC voice-based

trading. According to our model, while a decrease in the trading costs in the model reduces

yield spreads for bonds at most rating classes, it also induces more informed trading for

speculative-grade bonds, which makes informational illiquidity more critical in determining

the prices of these bonds.

Facing a higher degree of adverse selection, liquidity-shocked bond sellers tend to pay

higher liquidity-status revealing costs to trade at favorable prices. In this regard, our model

predicts that a decrease in trading costs caused by the development of electronic trading

platforms increases the demand for liquidity-status revealing. We postulate that liquidity-
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Table 5: The Effects of Liquidity-Shock Intensity

AAA AA A BBB BB B CCC CC/C

ξ = 0.5 Yield spreads 78 88 110 168 392 500 844 1380

Turnover rate 0.50 0.50 0.50 0.50 0.50 0.52 0.80 0.97

Overall liquidity costs 3.95 4.05 4.30 4.91 6.92 7.75 10.86 15.61

Informational part 0.48 0.55 0.71 1.09 2.23 2.64 4.51 7.48

Non-informational part 3.47 3.51 3.60 3.82 4.69 5.11 6.34 8.13

ξ = 0.68 Yield spreads 83 93 115 173 397 505 847 1363

(benchmark) Turnover rate 0.68 0.68 0.68 0.68 0.68 0.82 1.37 1.32

Overall liquidity costs 4.95 5.05 5.28 5.84 7.55 8.29 11.19 15.65

Informational part 0.47 0.54 0.70 1.07 2.10 2.51 4.44 7.48

Non-informational part 4.48 4.51 4.58 4.76 5.45 5.78 6.76 8.17

ξ = 0.9 Yield spreads 89 99 122 180 405 513 853 1343

Turnover rate 0.90 0.90 0.90 0.90 0.90 1.07 1.97 1.47

Overall liquidity costs 6.19 6.28 6.49 7.00 8.53 9.10 11.68 15.71

Informational part 0.47 0.54 0.70 1.09 2.16 2.50 4.41 7.48

Non-informational part 5.72 5.74 5.79 5.91 6.38 6.60 7.27 8.23

Notes: This table shows the effects of the liquidity-shock intensity ξ on yield spreads (bps), turnover
rates (yearly), overall liquidity costs (%), informational liquidity costs (%), and non-informational
liquidity costs (%) across different rating classes.

status revealing is more likely to happen when an investor trades with her relationship dealer,

who is better informed of her trading motive but charges a higher price due to information

monopoly. Therefore, our comparative-static results suggest a certain level of segmentation in

corporate bond markets, where an investor searches in the electronic trading platform when

trading low-risk information-insensitive bonds and would turn to her relationship dealer when

trading high-risk bonds that may cause concerns about adverse selection.

4.5.2 Effects of the Intensity of Liquidity Shocks

Table 5 presents the comparative-static results concerning ξ, the Poisson intensity at which

a bondholder is hit by a liquidity shock and forced to sell her bond position. First, Table 5

shows that an increase in the liquidity shock intensity leads to increases in turnover rates and

non-informational liquidity costs for all rating classes. These two results are not surprising:

when bond investors are more likely to liquidate their bonds, the trading volume is higher,

and the expected value of potential trading costs due to forced selling in the future becomes

larger.
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However, the effect of the liquidity shock intensity on the size of informational liquidity

costs is ambiguous. Similar to Section 4.5.1, an increase in the liquidity-shock intensity

affects informational liquidity through the informed-trading and the bond-valuation channel.

On the one hand, when the liquidity-shock intensity increases, there is more liquidity-driven

selling in the secondary market. More liquidity-driven selling induces more non-liquidity-

shocked bondholders to exploit their informational advantages, resulting in a higher degree

of adverse selection and a higher informational liquidity discount.5

On the other hand, an increase in the liquidity-shocked intensity also reduces the bond-

value difference between a high-type and a low-type firm. Intuitively, when investors have

shorter investment horizons, they expect to liquidate their bonds more frequently in the

future, so they worry less about information asymmetry with respect to the recovery value in

default. So, an increase in the liquidity-shock intensity reduces the degree of adverse selection

by making bonds less information-sensitive in the eyes of their investors.

Due to the presence of these two opposite effects, the impact of an increase in liquidity-

shock intensity on informational liquidity costs is theoretically ambiguous. Our calibration

results suggest that the effect depends not only on the credit risk of the bond but also on

the current level of liquidity shock intensity. For instance, an increase in ξ from 0.5 to 0.68

(benchmark case) tends to reduce informational liquidity discounts for the average BBB bond

and the average BB bond, but a further increase in ξ from 0.68 to 0.9 raises informational

liquidity discounts for these two representative bonds.

Last, we analyze the effect of liquidity shock intensity on yield spread in the calibrated

model. According to Table 5, an increase in the liquidity shock intensity leads to increases

in yield spreads for all rating classes except for CC/C. When we increase ξ from 0.68 (bench-

mark case) to 0.9, the yield-spread increase again exhibits a hump-shaped pattern: roughly

speaking, the yield-spread increase is the highest for bonds in the BBB, BB and B rating

classes.

The liquidity shock in the model corresponds to bond selling for non-informational rea-

sons such as preference changes, leverage constraints, and forced redemptions in bond ETFs

5Note that the increase in the degree of adverse selection is partially mitigated by the presence of the
liquidity-status revealing option.
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or mutual funds. According to the calibrated model, shocks that force bond investors to

liquidate, i.e., performance-driven mutual fund redemptions (Goldstein et al., 2017), would

have the largest adverse effects on bond prices for high-yield bonds around the BB rating.

Nevertheless, expecting higher costs associated with liquidating these high-yield bonds, a

bond mutual fund manager with a diverse portfolio of corporate bonds may choose to sell

high-quality corporate bonds to minimize liquidation costs (Ma et al., 2022). Incorporating

bond investors’ endogenous liquidation decisions into our credit-risk model, which is beyond

the scope of our paper, can be valuable for understanding the interaction between investors’

liquidation decisions and equilibrium bond pricing.

Another factor that affects the liquidity-shock intensity in the model is the liquidity

preference of bond investors. For instance, Chen et al. (2020) tests the clientele effect in the

corporate bond market and finds that insurers’ investment horizons and funding constraints

correlate with the illiquidity of their corporate bond portfolio and have pricing implications

in the bond market. Suppose we incorporate this clientele effect into our model by assuming

that investors differ in their future demands for liquidity. In that case, investors with higher

liquidity-shock intensities should trade bonds with lower credit risks (i.e., investment-grade

bonds), and investors with higher liquidity-shock intensities should trade bonds with higher

credit risks (i.e., high-yield bonds). Such an extension can improve the model’s quantitative

performance in explaining the high turnover rate for the first yield-spread bin in Table 1.

4.5.3 Effects of the Recovery Rate Difference

Table 6 presents the comparative-static results concerning αH − αL, the recovery rate differ-

ence between a high-type and a low-type firm. When conducting this analysis, we change

the recovery rate difference while holding the average recovery rate παH + (1−π)αL fixed at

55%. Therefore, an increase in the recovery rate difference raises the degree of information

asymmetry between bond investors in the model.

As in Table 6, the effect of the recovery rate difference on the turnover rate in the bond

market varies across different rating groups. For representative bonds in the investment-

grade region, an increase in the recovery rate difference around its calibrated value has little

impact on their turnover rates. This is because informed investors find it unprofitable to
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Table 6: The Effects of the Recovery Rate Difference

AAA AA A BBB BB B CCC CC/C

αH = 57% Yield spreads 82 91 114 170 389 495 816 1304

αL = 51.3% Turnover rate 0.68 0.68 0.68 0.68 0.68 0.68 0.96 1.33

Overall liquidity costs 4.75 4.82 4.98 5.38 6.68 7.17 8.73 11.57

Informational part 0.27 0.31 0.40 0.62 1.23 1.39 1.97 3.40

Non-informational part 4.48 4.51 4.58 4.76 5.45 5.78 6.76 8.17

αH = 58.9% Yield spreads 83 93 115 173 397 505 847 1363

αL = 49.8% Turnover rate 0.68 0.68 0.68 0.68 0.68 0.82 1.37 1.32

(benchmark) Overall liquidity costs 4.95 5.05 5.28 5.84 7.55 8.29 11.19 15.65

Informational part 0.47 0.54 0.70 1.07 2.10 2.51 4.44 7.48

Non-informational part 4.48 4.51 4.58 4.76 5.45 5.78 6.76 8.17

αH = 63% Yield spreads 86 96 120 180 420 542 921 1393

αL = 40.2% Turnover rate 0.68 0.68 0.68 0.68 0.93 1.28 1.12 0.68

Overall liquidity costs 5.47 5.64 6.04 7.01 10.20 11.99 17.58 24.72

Informational part 0.99 1.13 1.46 2.24 4.75 6.21 10.82 16.55

Non-informational part 4.48 4.51 4.58 4.76 5.45 5.78 6.76 8.17

Notes: This table shows the effects of the difference between the recovery rates of high-type firms and
low-type firms, that is, αH−αL, on yield spreads (bps), turnover rates (yearly), overall liquidity costs
(%), informational liquidity costs (%), and non-informational liquidity costs (%) across different
rating classes.

exploit their informational advantages on these low-risk bonds. For representative bonds

in the speculative-grade region, an increase in the recovery rate difference has ambiguous

effects on their turnover rates. For instance, consider an increase of αH − αL from 9.1% in

the benchmark case to 22.8%. Following the increase, turnover rates become higher for BB

and B representative bonds. For these two bonds, a higher degree of information asymmetry

increases the amount of informed trading. However, the turnover rate becomes lower for the

CCC and the CC/C representative bonds. For those two bonds, a higher degree of information

asymmetry reduces the amount of informed trading primarily by inducing liquidity-shocked

sellers to reveal their liquidity status at higher intensities. Therefore, our model predicts that

an increase in the degree of information asymmetry has a non-monotonic effect on trading

volume across bonds with different credit risks.

Besides, Table 6 shows that an increase in the recovery rate difference tends to raise the

size of informational liquidity costs and the yield spread in the bond market. This result is

straightforward: an increase in the recovery rate difference increases the degree of information
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asymmetry in the bond market, resulting in higher informational liquidity discounts in bond

pricing. Further, Table 6 suggests that for most representative bonds (from AAA to CCC),

the effects of recovery rate difference on informational illiquidity and yield spreads are higher

for bonds with higher credit risks.

Note that a change in the recovery rate difference affects bond pricing by changing

the information structure in the bond market. So, we can interpret it more broadly as a

shock that changes the degree of information asymmetry between bond investors, such as a

regulatory reform that changes the accounting transparency of corporate bonds or a policy

shock that affects the informativeness of credit ratings. In this regard, our model predicts

that an improvement in accounting transparency or credit-rating informativeness can reduce

yield spread by lowering informational liquidity costs. However, its effect on trading volume

is ambiguous and varies across bonds with different credit risks.

5 Discussion and Conclusion

In this paper, we develop a structural credit-risk model to study the effect of information

asymmetry on yield spreads and trading volume in the corporate bond market. Due to

information asymmetry between bond buyers and sellers, the model predicts a hump-shaped

relationship between bonds’ turnover rates and yield spreads, consistent with US corporate

bond trading data. In the calibrated model, we find that the effects of information asymmetry

on bond prices are non-negligible for investment-grade bonds and are economically sizable

for speculative-grade bonds. According to the model, regulations that increase bond trading

costs and shocks that induce forced liquidation have the most significant adverse effect on

market liquidity for bonds with intermediate levels of credit risks.

Our paper highlights the critical role of informational frictions in shaping corporate

bond trading volume and prices. The model made several simplifying assumptions about

the trading mechanism. First, we model the presence of non-informational frictions by in-

troducing a reduced-form transaction cost in an otherwise competitive market. In reality,

these non-informational frictions appear as search costs, inventory costs, and dealers’ market

power. Thus, future works that endogenize these non-informational frictions in our model
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can provide further insights into the interaction between informational and non-informational

frictions in corporate bond markets.

Besides, we allow liquidity-shocked bondholders to reveal their liquidity status with

costly efforts. The liquidity-status revealing option captures the process of bond investors

searching for trustworthy dealers or trading venues to reduce informational illiquidity. Micro-

founding the liquidity-status revealing option, especially by incorporating time delay as a

potential source of signaling device and indirect trading costs (Daley and Green, 2012), can

deepen our understanding of information-theoretic illiquidity in corporate bond markets.
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A Appendix

A.1 Proof of Proposition 3.1 and Closed-Form Solutions

In this section, we prove the existence and uniqueness of equilibrium. At the same time, we

provide the closed-form solutions of the model. For clarification, note that we do not rely on

closed-form solutions to derive the existence and uniqueness.

To begin, note that

m(x)(PA(x)− κ−DL(x)) = 0, ∀x ≥ xD, (13)

because the second condition in (11) implies PA(x)−κ−DL(x) has to be 0 unless m(x) = 0.

Due to this property, together with the property described in (3), equations (9) and (10) are

reduced to

(r + ξ)J(x) = AJ(x) (14)

subject to J(xD) = (αH−αL)xD
r−µ and lim

x→∞
J(x) = 0. The explicit solution for J(x) is given by

J(x) =
(αH − αL)xD

r − µ

(
x

xD

)φ
, (15)

where φ =
−µ+σ2

2
−
√(

µ−σ2
2

)2
+2σ2(r+ξ)

σ2 < 0. Here, there are no non-homogeneous terms. Hence,

as J(xD) > 0 and lim
x→∞

J(x) = 0, the probabilistic representation for J(x) implies J(x) must

be decreasing in x. Then there must be a unique pair of (xL, xS) that satisfies the conditions

in (12). In fact, this result continues to hold even if we assume that the non-informational

trading cost κ(x) increases in x as briefly mentioned before. Further, we can easily see that

xL < xS because δ > 0. We have therefore constructed the equilibrium thresholds xL and

xS, which we can compute numerically using the expressions for J(x) and κ.

Having pinned down J(x), xL, and xS, we can now solve the HJB equation for DL(x).

Specifically, due to the properties in (7), (11), and (13), the HJB equation (10) can be
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rewritten as

rDL = c+ ξ

[
1x≤xL

(
λJ − κ− δ

2

)
+ 1xL<x<xS

(λJ − κ)2

2δ
+ 1xS≤x(λJ − κ)

]
+ADL. (16)

The boundary conditions for the low-type firm’s bond value are given by

DL(xD) =
αLxD
r − µ

, lim
x↑xL

DL(x) = lim
x↓xL

DL(x), lim
x↑xL

DL
x (x) = lim

x↓xL
DL
x (x), (17)

lim
x↑xS

DL(x) = lim
x↓xS

DL(x), lim
x↑xS

DL
x (x) = lim

x↓xS
DL
x (x), (18)

which are usual value-matching and smooth-pasting conditions. To provide the closed-form

solution of DL(x), let J1 = J(x)/xφ for notational convenience. Then the closed-form solution

of DL(x) is given by

DL(x) =


c−ξκ− ξδ

2

r
+ ξλJ1

l(φ)
xφ + A1x

η1 + A2x
η2 , if xD ≤ x < xL

c+ ξκ2

2δ

r
+ ξ

2δ

(
λ2J2

1

l(2φ)
x2φ − 2λJ1κ

l(φ)
xφ
)

+ A3x
η1 + A4x

η2 , if xL ≤ x < xS

c−ξκ
r

+ ξλJ1
l(φ)

xφ + A5x
η2 , if xS ≤ x,

(19)

where l(a) := r − aµ − a(a − 1)σ2/2 for any a. The coefficients A1, ..., A5 are determined

from the boundary conditions described in (17).

Using the above results, we can now readily pin down the remaining equilibrium objects.

That is, DH(x) is given by DL(x) + J(x); PR(x) is given by λDH(x) + (1− λ)DL(x); PA(x)

is given by (11); θ(x) and m(x) is given by
θ(x) = 1, if x ∈ (xD, xL]

θ(x) = λJ(x)−κ
δ

, if x ∈ (xL, xS)

θ(x) = 0, if x ∈ [xS,∞)

and 
m(x) = 0, if x ∈ (xD, xL]

m(x) = (1−θ(x))[π(ξ−ν)J(x)−(ξ−πν)κ]
(1−π)κ , if x ∈ (xL, xS)

m(x) = 0, if x ∈ [xS,∞),
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respectively, due to (2), (6), and (11). This expression confirms that 0 < θ(x) < 1 and

m(x) > 0 for all x ∈ (xL, xS) because κ < λJ(x) < κ+ δ for all such x as shown above.

Lastly, we prove the global optimality conditions that must be satisfied by the liquidity-

status revealing strategy θ(x) and the informed bond-selling strategy m(x). To this aim, we

claim the following conditions hold:
PR(x)− PA(x) ≥ δ, ∀x ∈ [xD, xL)

PR(x)− PA(x) ∈ [0, δ], ∀x ∈ [xL, xS)

PR(x)− PA(x) = 0, ∀x ∈ [xS,∞)

(20)

and  PA(x)− κ = DL(x), ∀x ∈ [xD, xS)

PA(x)− κ ≤ DL(x), ∀x ∈ [xS,∞).
(21)

The first condition in (20) holds because PR(x)−PA(x) = λJ(x) > δ+κ > δ for all x < xL.

This condition justifies the conjectured solution that θ(x) = 1 for all such x. The second

condition in (20) holds because 0 ≤ PR(x) − PA(x) = λJ(x) − κ ≤ δ for all x ∈ [xL, xS).

This condition justifies the conjectured solution that 0 ≤ θ(x) < 1 for all such x. We have

already shown the third condition in (20) in the third line of (11). This condition justifies the

conjectured solution that θ(x) = 0 for all x ≥ xS. The first condition in (21) holds because

PA(x) − κ = DL(x) − κ < DL(x) for all x < xL. This condition justifies the conjectured

solution that m(x) = 0 for all such x. We have already shown the second condition in (21)

in the second line of (11). This condition justifies the conjectured solution that m(x) ≥ 0

for all x ∈ [xL, xS). The third condition in (21) holds because PA(x)−DL(x) = λJ(x) ≤ κ

for all x ≥ xS. This condition justifies the conjectured solution that m(x) = 0 for all such

x. We have therefore completed characterizing an equilibrium of our model, which has to be

unique as mentioned above.
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